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Abstract

Heat transfer of a liquid to a solid wall in natural convection is studied in the regime of laminar to turbulent

transition in the presence of longitudinal vortices. These vortices lead to an increase in heat transfer, especially in their

later stage before breakdown. This last increase is significant and even higher than one would expect for a turbulent

flow. In this work heat transfer was studied numerically and in experiments using thermochromic liquid crystals.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Heat transfer of fluids to solid walls has been studied

in numerous different papers, and it is well known that

the heat transfer depends strongly on the state of the

flow. Although there are analytical solutions for laminar

flows, only empirical correlations for the heat transfer in

the turbulent regime exist. In the present study, heat

transfer in the transition region between laminar and

turbulent flow of natural convection at an inclined flat

wall is examined. Vliet [12] and Shaukatullah and

Gebhardt [10] had already performed experiments for

this type of flow. Vliet [12] found a correlation for the

mean heat transfer as a function of the downstream

position (see Eq. (7)) with the heat transfer being much

higher than for laminar flow. However, there is a tre-

mendous scatter in the measured values for the transi-

tion region.

The experiments of Sparrow and Husar [11] showed

the existence of longitudinal vortices in natural convec-

tion flows at inclined walls, and Shaukatullah and

Gebhardt [10] proved that these vortices have a signifi-

cant influence on the local heat transfer distribution

during the laminar–turbulent transition. Due to the

limits of their measurement technique using thermo-

couples, quantitative results for the heat transfer could

not be made, however, the data of Shaukatullah

and Gebhardt [10] give already a small hint that the heat

transfer at the end of transition is higher than expected.

This increase in heat transfer is strongly coupled to

the evolution of the longitudinal vortices. Zuercher

et al. [15] reported a significant increase in vorticity

just before the longitudinal vortices decay into turbu-

lence.

Heat transfer measurements in similar flows with

longitudinal vortices show the same evidence. For forced

convection above a heated flat plate (Blasius-boundary

layer) Imura et al. [3] state a significant increase and

scatter of the measured values before the heat transfer

reaches constant values in the turbulent regime. At the

edges of heated flat plates the natural convection flow

develops longitudinal vortices as well. The data of Ki-

tamura and Kimura [8] show a significant increase in

heat transfer at the end of lifetime of the longitudinal

vortices.
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1.1. Geometry of the flow

Fig. 1 shows the basic set-up of the flow. In this study

we consider a heated semi-infinite flat plate, which is

located in a fluid at rest. The flat plate has an edge (at

x¼ 0) and is infinite in the z-direction. The y-direction is

perpendicular to the flat plate and gives the distance to

the wall.

Because of the plate being inclined against the verti-

cal by a small angle c, a natural convection flow devel-

ops which is two-dimensional and laminar at the

beginning. But a little bit downstream the flow becomes

unstable to three-dimensional longitudinal vortices, see

[4,7]. These vortices are pair wise counter-rotating and

their rotation axis is parallel to the main flow direction

(x-direction). That means the boundary layer flow is

doing a more screw-like motion in x-direction. The

vortices are steady and growing in the downstream di-

rection.

Due to these vortices the boundary layer is deformed

and regions of strong up- and down-wash develop,

which effect the heat transfer significantly, see [4]. This

change of the 2D laminar flow to a 3D laminar flow with

longitudinal vortices is known as primary instability, or

in the case of forced flow over concave surfaces as

�G€oortler instability�, see [2].

As these laminar vortices grow stronger, they initiate

the laminar–turbulent transition and in their later stage

they become unsteady and start a wavy, sinuous-like

motion, which is called secondary instability. The wavy

motion of the longitudinal vortices grows very fast with

the downstream flow and finally the vortices break up

into turbulence. During the last stage of the secondary

instability the mean heat transfer of the flow is increased

strongly, and with the break up of the vortices the heat

transfer ceases to turbulent values.

2. Experimental set-up

The aim of the experiments was, to investigate the

character of the secondary instabilities and to measure

the heat transfer during laminar–turbulent transition.

Nomenclature

A shape function of a wave like disturbance

c propagation velocity

g gravitational acceleration

Gr� modified Grashof number for constant heat

flux

h local heat transfer coefficient

k thermal conductivity

Nu Nusselt number

Pr Prandtl number

_qq constant heat flux

Ra� modified Rayleigh number for constant heat

flux

Twall measured local temperature of the plate

T1 far field temperature of the ambient fluid

v vector of a small disturbance (velocity,

pressure, temperature)

X a given downstream position

x downstream direction of the coordinate sys-

tem

y wall normal direction of the coordinate

system

z transverse direction of the coordinate sys-

tem

Greek symbols

a dimensionless wave number

b coefficient of thermal expansion

c inclination of the wall against the vertical

k1 wavelength of the primary instability

kx wavelength of the secondary instability

m viscosity

r dimensionless wave propagation

Subscripts

1 primary instability

x in downstream direction or at a given posi-

tion X

Fig. 1. Flow geometry of longitudinal vortices in natural con-

vection at an inclined wall.
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Therefore, a constant heat flux plate (31.5 mm wide and

49.5 mm long) inside a 100 l water tank was examined,

using �thermochromic liquid crystals (TLC)� to monitor

the surface temperatures. The experimental set-up used

is already described in detail in the papers of Jeschke

et al. [5,6].

2.1. Heat transfer measurement

The TLC-method visualizes the surface temperature

of the inclined heated plate with a resolution of 50 lm.

This allows to measure a fine grained surface tempera-

ture distribution of a large area, that opens the possi-

bility to calculate exact values for the mean heat transfer

(in the transverse direction). The dimensionless heat

transfer is expressed by the Nusselt number, which can

be expressed for a constant heat flux plate as follows:

Nu ¼ hx
k
¼ _qq

Twall � T1

x
k

ð1Þ

2.2. The character of the secondary instability

The longitudinal vortices have a strong influence on

the heat transfer, thus, the pattern of local temperatures

on the hot plate (which is visualized by TLC) is a

�footprint� of the vortices itself. This means that in the

down-wash region of each vortex pair the heat transfer

is enhanced, leading to a lower surface temperature,

however, in the up-wash region of the vortex pair the

temperature is high, because the heat transfer is de-

creased. Thus, a steady vortex is visualized by the TLC

as a steady pattern of lines along the downstream di-

rection. As soon as the secondary instability sets in, the

longitudinal vortices become unsteady and move in a

wavy, sinuous manner as a function of time. Fig. 2 (left

side) gives a sketch of the longitudinal axis of such

vortices. Further downstream the wavy motion increases

in amplitude, but the wavelength kx or the velocity c of

the motion does not change. The secondary motion is

easily visualized by TLC and can be examined using a

CCD-camera and image processing software, see [1].

The character of the secondary instabilities is de-

scribed by three parameters: the wavelength kx of the

sinuous motion, the velocity c of the moving wave and

the growth rate of the developing amplitude.

The wavelength k1 resembles the interval between the

longitudinal vortex pairs of the primary instability. This

primary wavelength remains constant even when the

vortex pair gets instable to the secondary instability.

2.2.1. Image analysis

In order to measure growth rate, wavelength and

propagation velocity of the secondary instability, colour

pictures of the TLC were taken. Then an image analysis

procedure was used, that extracted the trace of the high

temperature regions (which is equivalent to the up-wash

regions of the longitudinal vortices). The obtained result

is a good measure for the vortex axis of a longitudinal

vortex pair. Such a trace is shown in Fig. 2, right side.

By using a fast-Fourier-transform (FFT) algorithm the

wavelength kx of the secondary motion of the longitu-

dinal vortices could be found. A dimensionless wave

number ax can then be calculated:

Fig. 2. (Left) Sketch of the vortex axis of three longitudinal vortices that are unstable to secondary instabilities. This secondary in-

stability is a wavy motion of the longitudinal vortex, which has a wavelength of kx and that propagates downstream with velocity c.
(Right) Image analysis of the measurement of a vortex pair at 18 succeeding time steps. The wavy structure and the propagation in

downstream direction of the secondary instability can clearly be seen. The velocity c is calculated by c ¼ Dx=Dt.
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ax ¼
2p
kx

X

ðGr�xÞ
0:2

ð2Þ

with X being the downstream position and Gr�x is the

Grashof number for an inclined constant heat flux plate,

defined by

Gr�x ¼
g cosðcÞb _qqX 4

km2
ð3Þ

The propagation velocity c of the longitudinal vortices

was measured by tracking the peak or the valley of the

sinuous wave of the vortex axis, as shown on the right

side of Fig. 2. For each vortex pair several peaks/valleys

were tracked and then averaged. Then the dimensionless

wave propagation rx can be derived by:

rx ¼
2pc
kx

X 2

mðGr�xÞ
0:6

ð4Þ

2.3. Flow visualization

Investigating the local surface temperature distribu-

tion is very useful in order to examine the behaviour of

the secondary instabilities. However, it is not a proof for

the one and only existence of longitudinal vortices.

Therefore, the flow was visualized independently by two

different techniques: First, an electrochemical technique

using thymol blue as a dye, and second, particle image

velocimetry (PIV). A detailed description of the set-up is

given by Biert€uumpfel [1].

3. Numerical simulation

In addition to the experiments the flow field has been

modelled by a numerical simulation of the boundary

layer. In order to reduce the computational time, only a

single vortex pair was considered. The computed do-

main of the flow was restricted to the region of the

laminar–turbulent transition (see Fig. 3). The size of the

grid was 33 cells in x-, 20 cells in y- and 33 cells in

z-direction. The cells were equidistant in x- and z-direc-
tion, but a refinement was applied in y-direction. E is the

entrance region of the flow. The width of the domain

covers one longitudinal vortex pair. In the downstream

direction the domain starts in the region of steady

laminar longitudinal vortex flow and it ends at the tur-

bulent flow regime. In the direction perpendicular to the

wall (y) it covers the whole boundary layer. The

boundary conditions at the entrance region (E) were set

to the flow field condition of a laminar longitudinal

vortex pair (primary instability). The values were taken

from the calculations by Jeschke [4]. Additionally, the

values of this inflow condition were distorted by a small

periodic disturbance in order to model an infinite small

disturbance that is amplified by the primary flow. This

disturbance v is a wave-like motion of the form:

v ¼ Aðy; zÞeax�rt ð5Þ

The values of A, r and a were taken from a stability

analysis by Biert€uumpfel [1]. The results of this stability

analysis had been confirmed by the experimental find-

ings of this study. The origin of such disturbances is not

known, but it is believed that these disturbances are

present and that the primary flow will amplify only one

significant type of disturbance, which will result in the

secondary instability further downstream. A more de-

tailed discussion may be found in [1,13,14].

At the sides of the computational domain, the

transverse direction of the flow, periodic boundary

conditions were applied, and on top of the computa-

tional domain (D), the far field condition of the laminar

2D-flow was chosen as boundary condition. The outlet

(A) was set to a free, no-influence boundary condition.

The code FLUENT was used to solve the Navier–

Stokes� and the energy equation presuming Boussineq�s
approximation. For details the reader is referred to [1].

The aim of the numerical simulation was to give

answers to the following questions: Is there a second

proof for the existence of secondary instabilities of

longitudinal vortices, or is the observed motion just a

result of the experimental apparatus? Secondly, can the

heat transfer be calculated for the laminar–turbulent

transition?

4. Results and discussion

4.1. Results of the flow visualization

Fig. 4 shows photographs of the top view of the flow

along the wall. The flow is visualized using thymol blue

Fig. 3. Computational domain of the numerical simulation.
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as a dye indicating the wavy movement of the longitu-

dinal vortices. Fig. 4 (left) elucidates a so called �sinuous�
mode of oscillating vortex pairs and Fig. 4 (right) states

a so called �varicose� mode [13,14].

Fig. 5 gives the results of a PIV-measurement of the

cross-section of a single vortex pair: The main flow is

streaming into the page and the heated flat plate is lo-

cated at the bottom of the diagram. The isolines show

the rotation of the vortex pair. Although, this picture

does not show the time dependent movement of the

secondary instability, it states the existence of regular

longitudinal and counter-rotating vortex pairs.

Fig. 4. Flow visualization using thymol blue. The view is out of the far field perpendicular to the wall (comparable to Fig. 2). On the

left a sinuous motion is shown and on the right a varicose motion of the secondary instabilities is depicted.

Fig. 5. Shown is a result of PIV: Circulation in the cross-sectional plane of a vortex pair. The wall is at the bottom of the figure, and on

top there is the far field.
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All these results reveal that only longitudinal vortex

pairs are present. Thus, the TLC visualization of local

surface temperatures gives an exact description of the

longitudinal vortices, which creates any of the observed

structures.

The wavy motion of the longitudinal vortices also has

been visualized applying a direct numerical simulation

(DNS), see [1]. For the DNS a fluid of Prandtl number

Pr¼ 1 was used and the calculation was done for a

smaller cavity than in the experiments (for the reason of

reduction of computational time). The results of the

simulation correspond to the experimental findings:

Although the wavelengths and velocities of the second-

ary instabilities are different in simulation and ex-

periment (due to different fluids), a development of

longitudinal vortices with secondary instabilities could

be observed.

4.2. Characteristic parameters of secondary instabilities

Basically the secondary instabilities can be described

by three parameters (see Eq. (5)): (a) the growth rate of

the amplitude of oscillation, (b) the wavelength kx or the

dimensionless wave number ax, and (c) the travelling

velocity c of the wave or the dimensionless wave prop-

agation rx.

4.2.1. Growth rate

The growth of the secondary instabilities is very fast:

Usually the vortex pair oscillates only a few wavelengths

before breakdown occurs. Thus, it was not possible to

identify any law for the growth: some of the results lead

to the assumption of linear, others to exponential

growth. Therefore, the growth rate was not studied any

further, because a common rule for the growth could not

be found nor could any measure for the growth be given.

In the linear stability analysis usually an exponential

law for the growth is assumed [1,13,14]. This assumption

is justified for the purpose of the linear stability analysis,

which considers only very small disturbances. However,

in an experiment only instabilities of a developed state

can be observed, and the law of growth in such a largely

developed secondary instability may be very different

from the initial exponential growth.

4.2.2. Wave number ax

In Fig. 6 the distribution of the measured wavelength

is shown in terms of the dimensionless wave number ax
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as a function of the modified Grashof number Gr�x ,
which is a measure for the downstream position X .

Because all dimensionless numbers use the down-

stream position X for the scaling, the results of a single

longitudinal vortex are plotted twice: Once for the po-

sition X of the first occurrence of the secondary insta-

bility and secondly for the breakdown position of the

longitudinal vortex. The actual (dimensional) wave-

length kx remained constant from the onset of the in-

stability until breakdown.

It is remarkable that all wave numbers ax of the

secondary instability are of the same order of magni-

tude.

4.2.3. Propagation velocity of the secondary instability

Just like the wavelength kx, the propagation velocity

c did not change. Fig. 7 depicts the dimensionless

propagation rx of the secondary instability. The error

bars in the horizontal direction show the length of the

secondary instability from the first detectable occurrence

until the breakdown of the vortex. The vertical error bar

states the standard deviation of the measurement.

Again, the order of magnitude of the measurements

is the same and the obtained results are almost similar.

4.3. Heat transfer

For the laminar regime one can derive an analytical

solution for the heat transfer (of water), see [1,9]:

Nulaminar ¼ 0:58427ðRa�xÞ
0:2

for Pr ¼ 5:414 ð6Þ

Vliet [12] was able to show that the mean heat transfer in

the turbulent region is well described by the relation:

Nulaminar ¼ 0:302ðRa�xÞ
0:24 ð7Þ

with Nu ¼ ð�hhX=kÞ ¼ ðX=kÞð1=ðz2 � z1ÞÞ
R z2
z1
hdz being the

Nusselt number for the in transverse (z-)direction aver-

aged heat transfer for a given downstream position X .
For flow fields with constant heat flux _qq the Rayleigh

number Ra� and the Grashof number Gr� are defined by:

Ra�x ¼ Gr�xPr ¼
g cosðcÞb _qqX 4

m
ð8Þ

In Fig. 8 the results of the heat transfer measurement are

shown. The thick bunch of lines in the middle depict the

Nusselt number averaged in the transverse (z-)direction.
These lines represent 40 measurements of succeeding

time steps (Dt ¼ 200 ms). The line below depicts the

minimum values that are archived in the up-wash re-

gions of the vortex pairs and the upper line gives the

maximum values that are reached in the down-wash

regions of the vortex pairs. (Error bars indicate the

uncertainty of the measurement.)

As expected the measured heat transfer corresponds

to the predicted laminar values for low Grashof num-

bers when the longitudinal vortices are weak. But for

rising Grashof number (or higher downstream position)

the longitudinal vortices grow stronger and increase the
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heat transfer, see [4]. Further downstream the secondary

instabilities occur and start to grow very fast. The heat

transfer increases much more than expected and exceeds

even the turbulent values. Although the longitudinal

vortices are in an unsteady motion due to the secondary

instabilities, the heat transfer, which is averaged in the

transverse direction, does not exhibit any dependence on

time. (A time-dependence sets in when the flow changes

to turbulent motion further downstream.) At their

summit the secondary instabilities are so strong that the

longitudinal vortices mix with each other and the flow

breaks down into a turbulent motion. The heat transfer

decreases and approaches the values of the turbulent

correlation of Vliet.

A comparison of the experimental results with the

numerical simulation shows only a qualitative agree-

ment, see Fig. 9: Although the simulation of the

boundary layer [1] reveals the same phenomena, the ef-

fect of ‘‘overshooting’’ occurs further downstream. This

is believed to be due to the starting condition taken from

[4] and to the rough numerical model, which must be

improved.

The aim, however, to verify numerically the existence

of an ‘‘overshooting’’ of the heat transfer was attained.

4.4. Discussion of the heat transfer

It is well known that longitudinal vortices influence

the heat transfer significantly [4,10], however, the high

increase on heat transfer in the presence of the second-

ary instability and the following decrease to turbulent

values is a remarkable new result of this study. Jeschke

[4] has already seen this effect in his measurements.

Shaukatullah and Gebhardt [10] used thermocouples to

investigate the longitudinal vortices, which limited the

resolution of their heat transfer measurements. How-

ever, their data exhibit a much higher scatter in the re-

gion of the secondary instability and the heat transfer is

well above of the turbulent correlation.

Similar effects can be found for other flows with

longitudinal vortices: The heat transfer data of Imura

et al. [3] for forced convection at the horizontal plate

and of Kitamura and Kimura [8] for natural convection

at the horizontal plate show an increase in heat transfer
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Fig. 8. Heat transfer at an inclined hot plate. Inclination c ¼ 26� against the vertical; Pr¼ 5.414; constant heat flux _qq¼ 3380 W/m2.
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above turbulent values for the regime of longitudinal

vortices before breakdown into turbulence.

A detailed analysis of the basic physical phenome-

non, however, was not available so far.
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